Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.087
Filtrar
1.
ACS Chem Neurosci ; 15(8): 1684-1701, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564598

RESUMO

Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1ß and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1ß, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1ß and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.


Assuntos
Cobre , Nanopartículas , Ratos , Animais , Cobre/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Betaína/farmacologia , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Encéfalo/metabolismo , Óxidos/metabolismo , Óxidos/farmacologia
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38483185

RESUMO

Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor ß (TRß) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRß binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.


The goose industry plays important roles in economics, cultures, and ecosystems, yet the low laying and growth rates of many indigenous breeds hinders the development of the goose farming. Betaine, an important methyl donor, is commonly used as a feed additive in livestock and poultry to enhance animal growth. Dietary supplementation of betaine in laying hens or gestational sows has been reported to promote the growth of their offspring. Here, we sought to investigate whether and how dietary betaine supplementation affects the growth and development of offspring goslings. In this study, goose breeders, both male and female, were fed a basal diet supplemented respectively with 0, 2.5, or 5 g/kg betaine for 7 wk. Goslings hatched from the breeder eggs of different groups were raised under the same standard condition for assessing the growth performance. Parental betaine increases the growth rate of offspring goslings with decreased DNA methylation on the IGF-2 gene promoter and increased expression of the IGF-2 gene in the liver. These results provide scientific evidence for the inter-generational effect of betaine on gosling growth.


Assuntos
Betaína , Fator de Crescimento Insulin-Like II , Animais , Betaína/farmacologia , Fator de Crescimento Insulin-Like II/genética , Gansos/genética , Gansos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Óvulo/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , Dieta/veterinária , Galinhas/genética , Galinhas/metabolismo , Epigênese Genética , RNA Mensageiro/metabolismo , Ração Animal/análise
3.
BMC Plant Biol ; 24(1): 165, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431542

RESUMO

BACKGROUND: Glycyrrhiza uralensis Fisch., a valuable medicinal plant, shows contrasting salt tolerance between seedlings and perennial individuals, and salt tolerance at seedling stage is very weak. Understanding this difference is crucial for optimizing cultivation practices and maximizing the plant's economic potential. Salt stress resistance at the seedling stage is the key to the cultivation of the plant using salinized land. This study investigated the physiological mechanism of the application of glycine betaine (0, 10, 20, 40, 80 mM) to seedling stages of G. uralensis under salt stress (160 mM NaCl). RESULTS: G. uralensis seedlings' growth was severely inhibited under NaCl stress conditions, but the addition of GB effectively mitigated its effects, with 20 mM GB had showing most significant alleviating effect. The application of 20 mM GB under NaCl stress conditions significantly increased total root length (80.38%), total root surface area (93.28%), and total root volume (175.61%), and significantly increased the GB content in its roots, stems, and leaves by 36.88%, 107.05%, and 21.63%, respectively. The activity of betaine aldehyde dehydrogenase 2 (BADH2) was increased by 74.10%, 249.38%, and 150.60%, respectively. The 20 mM GB-addition treatment significantly increased content of osmoregulatory substances (the contents of soluble protein, soluble sugar and proline increased by 7.05%, 70.52% and 661.06% in roots, and also increased by 30.74%, 47.11% and 26.88% in leaves, respectively.). Furthermore, it markedly enhanced the activity of antioxidant enzymes and the content of antioxidants (SOD, CAT, POD, APX and activities and ASA contents were elevated by 59.55%, 413.07%, 225.91%, 300.00% and 73.33% in the root, and increased by 877.51%, 359.89%, 199.15%, 144.35%, and 108.11% in leaves, respectively.), and obviously promoted salt secretion capacity of the leaves, which especially promoted the secretion of Na+ (1.37 times). CONCLUSIONS: In summary, the exogenous addition of GB significantly enhances the salt tolerance of G. uralensis seedlings, promoting osmoregulatory substances, antioxidant enzyme activities, excess salt discharge especially the significant promotion of the secretion of Na+Future studies should aim to elucidate the molecular mechanisms that operate when GB regulates saline stress tolerance.


Assuntos
Antioxidantes , Glycyrrhiza uralensis , Humanos , Antioxidantes/metabolismo , Betaína/farmacologia , Betaína/metabolismo , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Plântula/metabolismo
4.
Cell Biochem Funct ; 42(2): e3973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488483

RESUMO

The structural and functional disorders of the testis and ovary are one of the main complications of hyperglycemia. Betaine is a trimethyl glycine with antioxidant, antidiabetic, and anti-inflammatory potential. The aim of this study is to investigate the potential of betaine on the expression of aging and oxidative stress markers in ovarian and testicular cells under hyperglycemic conditions. Testicular and ovarian cells were subjected to four different conditions, including normal glucose and hyperglycemia, with or without betaine (5 mM). The cells with hyperglycemia saw an increase in malondialdehyde (MDA), methylglyoxal (MGO), expression of a receptor for AGE, and aging-related genes (ß-GAL), and a decrease in the activity of antioxidant enzymes including catalase, glutathione peroxidase, and superoxide dismutase. The treatment with betaine, in contrast, decreased the amount of MGO and MDA, and also downregulated aging-related signaling. Although hyperglycemia induces senescence in testicular and ovarian cells, the use of betaine may have a protective effect against the cell senescence, which may be useful in the management of infertility.


Assuntos
Antioxidantes , Hiperglicemia , Masculino , Feminino , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Testículo/metabolismo , Betaína/farmacologia , Betaína/metabolismo , Ovário/metabolismo , Óxido de Magnésio/metabolismo , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , beta-Galactosidase/metabolismo
5.
Chemosphere ; 353: 141387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331268

RESUMO

In industrial-scale cultivation of microalgae, salinity stress often stimulates high-value metabolites production but decreases biomass yield. In this research, we present an extraordinary response of Arthrospira platensis to salinity stress. Specifically, we observed a significant increase in both biomass production (2.58 g L-1) and phycocyanin (PC) content (22.31%), which were enhanced by 1.26-fold and 2.62-fold, respectively, compared to the control, upon exposure to exogenous glycine betaine (GB). The biochemical analysis reveals a significant enhancement in carbonic anhydrase activity and chlorophyll a level, concurrent with reductions in carbohydrate content and reactive oxygen species (ROS) levels. Further, transcriptomic profiling indicates a downregulation of genes associated with the tricarboxylic acid (TCA) cycle and an upregulation of genes linked to nitrogen assimilation, hinting at a rebalanced carbon/nitrogen metabolism favoring PC accumulation. This work thus presents a promising strategy for simultaneous enhancement of biomass production and PC content in A. platensis and expands our understanding of PC biosynthesis and salinity stress responses in A. platensis.


Assuntos
Ficocianina , Spirulina , Betaína/farmacologia , Clorofila A/metabolismo , Biomassa , Nitrogênio/metabolismo , Spirulina/metabolismo , Estresse Salino , Suplementos Nutricionais
6.
STAR Protoc ; 5(1): 102890, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341848

RESUMO

Quaternary ammonium compounds exhibit diverse applications as antibiotics, as surfactants, in paper industries, in sewage treatment, and in aquaculture. Here, we present a protocol for synthesizing a library of bioactive quaternary ammonium betaine derivatives under blue LED in water. We describe steps for preparing diazo compounds, synthesizing glycine betaine derivatives, and isolating pure final compounds via precipitation from an aqueous reaction mixture. This protocol promotes a sustainable approach by using water as the reaction medium and room temperature reactions. For complete details on the use and execution of this protocol, please refer to Rath et al. (2023).1.


Assuntos
Compostos de Amônio , Betaína , Betaína/farmacologia , Compostos de Amônio Quaternário/farmacologia , Água
7.
Poult Sci ; 103(3): 103435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232620

RESUMO

Excessive corticosterone (CORT) exposure could cause hepatic cholesterol accumulation in chickens and maternal betaine supplementation could decrease hepatic cholesterol deposition through epigenetic modifications in offspring chickens. Nevertheless, it remains uncertain whether providing betaine to laying hens could protect CORT-induced hepatic cholesterol accumulation via epigenetic mechanisms. This study aimed to examine the effects of dietary betaine on plasma and hepatic cholesterol contents, expression of cholesterol metabolic genes, as well as DNA methylation on their promoters in the liver of laying hens exposed to CORT. A total of 72 laying hens at 130 d of age were randomly divided into 3 groups: control (CON), CORT, and CORT+betaine (CORT+BET) groups. The experiment lasted for 35 d. Chickens in CON and CORT groups were fed a basal diet, whereas the CORT+BET group chickens were fed the basal diet supplemented with 0.1% betaine for 35 d. On d 28 of the experiment, chickens in CORT and CORT+BET groups received daily subcutaneous injections of CORT (4.0 mg/kg body weight), whereas the CON group chickens were injected with an equal volume of solvent for 7 d. The results showed that CORT administration led to a significant increase (P < 0.05) in the contents of cholesterol in plasma and liver, associated with activation (P < 0.05) of sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), lecithin-cholesterol acyltransferase (LCAT) and low-density lipoprotein receptor (LDLR) genes expression, and inhibition of cholesterol-7-alpha hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) genes expression in the liver compared to the CON. In contrast, CORT-induced up-regulation of HMGCR mRNA and protein abundances and downregulation of CYP7A1 mRNA and protein abundances were completely normalized (P < 0.05) by betaine supplementation. Besides, CORT injection led to significant hypomethylation (P < 0.05) on HMGCR promoter and hypermethylation (P < 0.05) on CYP7A1 promoter. Moreover, dietary betaine rescued (P < 0.05) CORT-induced changes in methylation status of HMGCR and CYP7A1 genes promoters. These results indicate that dietary betaine addition protects laying hens from CORT-induced hepatic cholesterol accumulation via epigenetic modulation of HMGCR and CYP7A1 genes.


Assuntos
Betaína , Oxirredutases , Animais , Feminino , Betaína/farmacologia , Corticosterona , Galinhas/genética , Fígado , Suplementos Nutricionais , Colesterol , Epigênese Genética , RNA Mensageiro
8.
Int J Biol Macromol ; 260(Pt 2): 129510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246472

RESUMO

Nowadays, more and more smart antibacterial materials have been prepared to meet some specific application area, and most of these materials have complex fabrication processes or incompatible biocompatibility. In this paper, a smart monomer that can switch between the form of quaternary ammonium salt and zwitterionic betaine was prepared and grafted onto cotton fabric. This finished cotton was smart too, it had nice antibacterial performance (99.89 % for E. coli and 99.97 % for S. aureus) in the form of quaternary ammonium salt, and it could release most of the attached bacteria when transferred to the form of zwitterionic betaine in PBS, and the form of zwitterionic betaine could converse back to the state of quaternary ammonium salt in HAC. Simultaneously, it was biocompatible in the form of zwitterionic betaine form. Furthermore, this smart material had nice function reproducibility after repeated transformations. In general, the smart antibacterial cotton could switch between bacteria-killing and bacteria-releasing reversibly, and had good biocompatibility and nice reproducibility, showing a potential application in reusable medical protective materials.


Assuntos
Betaína , Staphylococcus aureus , Betaína/farmacologia , Escherichia coli , Reprodutibilidade dos Testes , Compostos de Amônio Quaternário , Antibacterianos/farmacologia , Gossypium , Bactérias , Fibra de Algodão
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290533

RESUMO

An experiment was conducted to determine the effects of betaine on growth performance and intestinal health in rabbits fed diets with different levels of digestible energy. During a 36-d experiment, a total of 144 healthy 35-d-old weaned New Zealand white rabbits with a similar initial body weight (771.05 ±â€…41.79 g) were randomly distributed to a 2 × 3 factorial arrangement. Experimental treatments consisted of two levels of digestible energy (normal: 10.20 and low: 9.60 MJ/kg) and three levels of betaine (0, 500, and 1,000 mg/kg). Results indicated that rabbits fed the diet with low digestible energy (LDE) had reduced body gain/feed intake on days 1 to 14 and 1 to 36 (P < 0.05), increased the apparent total tract digestibility (ATTD) of neutral detergent fiber, acid detergent fiber (ADF), and n-free extract, and decreased the ATTD of gross energy (GE), crude fiber, and organic matter (OM; P < 0.05). The LDE diet upregulated the gene abundance levels of duodenum junctional adhesion molecule-3 (JAM-3) and downregulated the ileum toll-like receptor 4, myeloid differentiation factor 88, and interleukin-6 (IL-6; P < 0.05). Activities of amylase, lipase, trypsin, and the immunoglobulin M content in the jejunum were decreased in the LDE treatment group (P < 0.05). Dietary betaine supplementation increased the ATTD of GE, dry matter (DM), ADF, and n-free extract by LDE (P < 0.05). The villus height, crypt depth, and goblet cell numbers were decreased, and the villus-crypt ratio was increased in the duodenum (P < 0.05). The gene abundance levels of duodenum IL-2 were downregulated, and the duodenum JAM-2 and JAM-3 were upregulated (P < 0.05). Furthermore, the addition of betaine to the LDE diet increased the ATTD of GE, DM, and OM in rabbits (P < 0.05). Gene abundance levels of ileum IL-6 and duodenum JAM-3 were upregulated (P < 0.05). In summary, LDE diets can reduce the activity of intestinal digestive enzymes and decrease the ATTD of nutrients. However, the addition of betaine to LDE diets improved the intestinal barrier structure and nutrient ATTD in rabbits, with better results when betaine was added at an additive level of 500 mg/kg.


Insufficient dietary energy can cause many negative effects on animal production and cause intestinal diseases, which are one of the main causes of morbidity and mortality in rabbits. Results of some experiments demonstrated that betaine has various physiological functions such as improving energy utilization and intestinal health. Therefore, the aim of this study was to evaluate the effects of betaine supplementation on growth performance, intestinal function, and health in rabbits fed diets with different levels of digestible energy. The results showed that the addition of betaine to a low-digestible energy diet improved the gut barrier structure and nutrient digestibility in rabbits.


Assuntos
Betaína , Detergentes , Coelhos , Animais , Betaína/farmacologia , Detergentes/farmacologia , Interleucina-6 , Digestão , Dieta/veterinária
10.
PLoS One ; 19(1): e0294926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166023

RESUMO

Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.


Assuntos
Betaína , Hipertensão , Ratos , Animais , Betaína/farmacologia , Betaína/metabolismo , Ratos Endogâmicos WKY , Diuréticos/farmacologia , Eliminação Renal , Hipertensão/genética , Rim/metabolismo , Ratos Endogâmicos SHR , Pressão Sanguínea , Eletrólitos/metabolismo
11.
Redox Biol ; 69: 103026, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184996

RESUMO

Dementia, with homocysteine (Hcy) as an important risk factor, is a severe public health problem in the aging society. Betaine serves as a methyl donor and plays an important role in reducing Hcy. However, the effects and mechanisms of betaine on Hcy-induced cognitive impairment remain unclear. Firstly, SD rats were injected with Hcy (400 µg/kg) through vena caudalis, and betaine (2.5 % w/v) was supplemented via drinking water for 14 days. Betaine supplementation could attenuate Hcy-induced cognitive impairment in the Y maze and novel object recognition tests by repairing brain injury. Meanwhile, microglial activation was observed to be inhibited by betaine supplementation using immunofluorescence and sholl analysis. Secondly, HMC3 cells were treated with betaine, which was found to decrease the ROS level, ameliorate cell membrane rupture, reduce the release of LDH, IL-18 and IL-1ß, and attenuate the damage of microglia to neurons. Mechanistically, betaine alleviates cognitive impairment by inhibiting microglial pyroptosis via reducing the expressions of NLRP3, ASC, pro-caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-18 and IL-1ß. Betaine treatment can increase SAM/SAH ratio, confirming its enhancement on methylation capacity. Furthermore, betaine treatment was found to enhance N6-methyladenosine (m6A) modification of NLRP3 mRNA, and reduced the NLRP3 mRNA stability through increasing the expression of the m6A reader YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Finally, silencing YTHDF2 could reverse the inhibitory effect of betaine on pyroptosis. Our data demonstrated that betaine attenuated Hcy-induced cognitive impairment by suppressing microglia pyroptosis via inhibiting the NLRP3/caspase-1/GSDMD pathway in an m6A-YTHDF2-dependent manner.


Assuntos
Betaína , Disfunção Cognitiva , Animais , Ratos , Ratos Sprague-Dawley , Betaína/farmacologia , Piroptose , Interleucina-18 , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Caspase 1 , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Homocisteína , Interleucina-1beta , Inflamassomos
12.
Int J Biometeorol ; 68(2): 279-288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047943

RESUMO

To assess the impact of supplementing betaine (BT) under heat stress (HS) conditions on broiler performance and intestinal health from 21 to 42 days of age, a total of 150 male Ross 308 broilers were indiscriminately allotted to 3 treatments with 10 replications of 5 birds each. The control (CON) group was given a basal ration and accommodated at a thermoneutral condition (22 ± 1 °C), whereas the HS and HS + BT groups were raised under cyclic HS (33 ± 1 °C for 8 h and 22 ± 1 °C for 16 h per day) and received the basal ration without or with 1000 mg/kg BT, respectively. The HS reduced average daily gain (ADG); average daily feed intake; villus height (VH); VH to crypt depth (CD) ratio (VCR); activities of trypsin, lipase, glutathione peroxidase (GPX), and catalase; and enumeration of Lactobacillus and Bifidobacterium (P < 0.05) and augmented feed conversion ratio (FCR), CD, malondialdehyde (MDA) accumulation, and enumeration of Escherichia coli, Clostridium, and coliforms (P < 0.05). Conversely, BT supplementation heightened ADG, VH, VCR, trypsin activity, GPX activity, and populations of Lactobacillus and Bifidobacterium (P < 0.05) and lowered FCR, MDA accumulation, and Clostridium population (P < 0.05). Furthermore, the FCR value, trypsin and GPX activities, MDA content, and Bifidobacterium and Clostridium populations in the HS + BT group were nearly equivalent to those in the CON group. To conclude, feeding BT under HS conditions could improve broiler performance through improving intestinal health by specifically mitigating oxidative damage and enhancing the colonization of beneficial bacteria.


Assuntos
Betaína , Microbiota , Animais , Masculino , Betaína/farmacologia , Galinhas/metabolismo , Tripsina , Antioxidantes , Resposta ao Choque Térmico , Estresse Oxidativo , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária
13.
J Nutr Biochem ; 124: 109533, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977406

RESUMO

The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.


Assuntos
Suplementos Nutricionais , Doenças Metabólicas , Animais , Betaína/farmacologia , Betaína/uso terapêutico , Metilação de DNA , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Doenças Metabólicas/prevenção & controle , Humanos , Feminino , Gravidez
14.
J Biochem Mol Toxicol ; 38(1): e23559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840533

RESUMO

Doxorubicin (Dox) is an anthracycline antibiotic used to treat various cancers and shows severe toxicity in multiple organ systems, including kidneys. Evidence shows that betaine's antioxidant and anti-inflammatory properties could prevent the onset of several disorders. Hence, the present study aims to investigate the therapeutic potential of betaine on Dox-induced nephrotoxicity (DIN). Nephrotoxicity was induced in male Sprague Dawley rats using Dox at a dose of 4 mg/kg (cumulative dose: 20 mg/kg) by the intraperitoneal route and cotreated with betaine through oral gavage (200 and 400 mg/kg) for 28 days. At the end of the experiment, biochemical, oxidative stress parameters, histopathology, and qRT-PCR were performed. DIN was indicated by elevated serum creatinine, urea, and decreased albumin levels representing kidney damage; the histopathological lesions (increased capsular space, renal tubule damage, and fibrosis) in renal tissues supported these biochemical findings. Interestingly, betaine treatment improves these alterations in Dox-treated rats. Further, betaine treatment decreases the lipid peroxidation and nitrite concentration and increases the superoxide dismutases and catalase enzyme concentration in Dox-treated rats. Fascinatingly, at the molecular level, DIN in rats shows upregulation of the Nrf2/HO-1 gene, while betaine treatment attenuated its expression along with the downregulation of inflammatory genes (NLRP3, TLR-4, TNF-α, and IL-6) and fibrosis-related genes (TGF-ß and Acta2) expression in Dox-treated rats. These results showed that betaine has reno-protective properties by reducing inflammatory and fibrotic mediators and enhancing antioxidant capacity in the renal tissue of rats treated with Dox. We believe betaine can be exploited as a dietary supplement to attenuate DIN.


Assuntos
Antioxidantes , Betaína , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Betaína/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Doxorrubicina/toxicidade , Rim/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo
15.
Mar Pollut Bull ; 198: 115852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043203

RESUMO

Liaohe coastal wetland has experienced severe degradation of Suaeda salsa (L.) Pall (S. salsa) in recent years. However, the impact of exogenous betaine (GB) on S. salsa growth remains unclear. Therefore, we conducted a natural simulated cultivation in soils of coastal wetland to investigate the effects of GB on S. salsa growth. The results showed that GB increased the height and weight of S. salsa, and meanwhile stimulated the synthesis of endogenous betaine and amino acids, increased soluble sugars and elevated the activity of Na+, K+-ATPase (enhancing osmotic stability). In addition, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased, and malondialdehyde (MDA) and H2O2 decreased correspondingly, thereby improving the antioxidant capacity. Overall, GB application significantly alleviated salt stress and effectively promoted S. salsa growth. This study first indicated the important role of GB in influencing S. salsa growth, offering potential strategies for remediation in coastal wetlands.


Assuntos
Chenopodiaceae , Áreas Alagadas , Betaína/metabolismo , Betaína/farmacologia , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , China
16.
J Mol Med (Berl) ; 102(1): 113-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993562

RESUMO

Hepatic fibrosis (HF) could be developed into liver cirrhosis or even hepatocellular carcinoma. Stress has an important role in the occurrence and development of various considerable diseases. However, the effect of a certain degree stress on HF is still controversial. In our study, stress was simulated with regular chronic restraint stress (CRS) and HF model was induced with CCl4 in mice. We found that CRS was able to attenuate CCl4-induced liver injury and fibrosis in mice. Surprisingly, behavioral analysis showed that the mice in the HF group exhibited depression-like behavior. Further, the metabolomic analysis revealed that 119 metabolites and 20 metabolic pathways were altered in mice liver, especially the betaine metabolism pathway. Combined with the results of Ingenuity Pathway Analysis (IPA), the key proteins INSR, PI3K, AKT, and p-AMPK were identified and verified, and the results showed that CRS could upregulate the protein levels and mRNA expression of INSR, PI3K, AKT, and p-AMPK in liver tissues of HF mice. It suggested that CRS alleviated CCl4-induced liver fibrosis in mice through upregulation of the INSR/PI3K/AKT/AMPK pathway. Proper stress might be a potential therapeutic strategy for the treatment of chronic liver disease, which provided new insights into the treatment of HF. KEY MESSAGES: Chronic restraint stress mitigated CCl4-induced liver injury and hepatic fibrosis. CCl4-induced liver fibrosis could cause depression-like behavior. Chronic restraint stress altered metabolomic profiles in hepatic fibrosis mice, especially the betaine metabolism pathway. Chronic restraint stress increased betaine levels in liver tissue. Chronic restraint stress regulated the INSR/PI3K/AKT/AMPK signaling pathway in hepatic fibrosis mice.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Betaína/farmacologia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo
17.
Environ Toxicol ; 39(4): 2138-2149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108610

RESUMO

Recent evidence suggests that ferroptosis, an iron-dependent cell death process, may be involved in Alzheimer's disease (AD) pathology. The study evaluated the therapeutic potential of betaine and boric acid (BA) pretreatment administered to rats for 21 days in AD. Then, the rats were sacrificed, and morphological and biochemical analyses were performed in brain tissues. Next, an ex vivo AD model was created by applying amyloid-ß (Aß1-42) to synaptosomes isolated from the brain tissues. Synaptosomes were analyzed with micrograph images, and protein and mRNA levels of ferroptotic markers were determined. Betaine and BA pretreatments did not cause any morphological and biochemical differences in the brain tissue. However, Aß (1-42) administration in synaptosomes increased the levels of acyl-CoA synthetase long chain family member-4 (ACSL4), transferrin receptor-1 protein (TfR1), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased the levels glutathione peroxidase-4 (GPx4) and glutathione (GSH). Moreover, ACSL4, GPx4, and TfR1 mRNA and protein levels were similar to the ELISA results. In contrast, betaine and BA pretreatments decreased the levels of ACSL4, TfR1, MDA, and 8-OHdG in synaptosomes incubated with Aß1-42, while promoting increased levels of GPx4 and GSH. In addition, betaine and BA pretreatments completely reversed ACSL4, GPx4, and TfR1 mRNA and protein levels. Therefore, betaine and BA pretreatments may contribute to the prevention of neurodegenerative damage by supporting antiferroptotic activities.


Assuntos
Doença de Alzheimer , Betaína , Ácidos Bóricos , Animais , Ratos , Betaína/farmacologia , Sinaptossomos , 8-Hidroxi-2'-Desoxiguanosina , Glutationa , RNA Mensageiro
18.
J Nutr Biochem ; 125: 109555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147913

RESUMO

Age-related impairment of autophagy accelerates muscle loss and lead to sarcopenia. Betaine can delay muscle loss as a dietary methyl donor via increasing S-adenosyl-L-methionine (SAM, a crucial metabolite for autophagy regulation) in methionion cycle. However, whether betaine can regulate autophagy level to attenuate degeneration in aging muscle remains unclear. Herein, male C57BL/6J young mice (YOU, 2-month-old), old mice (OLD, 15-month-old), and 2%-betaine-treated old mice (BET, 15-month-old) were employed and raised for 12 weeks. All mice underwent body composition examination and grip strength test before being sacrificed. Betaine alleviated age-related decline in muscle mass and strength. Meanwhile, betaine preserved the expression autophagy markers (Atg5, Atg7, LC3-II, and Beclin1) both at transcriptional and translational level during the aging process. RNA-sequencing results generated from mice gastrocnemius muscle found Mettl21c, a SAM-dependent autophagy-regulating methyltransferase, was significantly higher expressed in BET and YOU group. Results were further validated by qPCR and western bloting. In vitro, C2C12 cells with or without Mettl21c RNA interference were treated different concentration of betaine (0 mM, 10 mM) under methionine-starved condition. Compared with control group, betaine upregulated autophagy markers expression and autophagy flux. By increasing the SAM level, betaine facilitated trimethylation of p97 (Mettl21c downstream effector) into valosin-containing protein (VCP). Increased VCP promoted autophagic turnover of cellular components, ATP production, and cell differentiation. Knock-down of Metthl21c dismissed improvements mentioned above. Collectively, betaine could enhance aged skeletal muscle autophagy level via Mettl21c/p97/VCP axis to delay muscle loss.


Assuntos
Betaína , Músculo Esquelético , Masculino , Animais , Camundongos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Betaína/farmacologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Autofagia/genética
19.
J Nutr ; 154(2): 491-497, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110180

RESUMO

BACKGROUND: Modification of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway can be induced by oral intake of inorganic NO3 (NIT) or NO3-rich products, such as beetroot juice (BRJ). OBJECTIVES: The primary aim of this study was to evaluate the plasma changes in betaine, choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), and NO3/NO2 (NOx) concentrations over 4 h after single oral ingestion of NIT or BRJ. The flow-mediated skin fluorescence (FMSF) method was applied to measure the changes in nicotinamide adenine dinucleotide reduced form (NADH) in response to transient ischemia and reperfusion. We hypothesized that various sources of NO3 may differently affect endothelial and mitochondrial functions in healthy human subjects. METHODS: In a randomized crossover trial, 8 healthy young adults ingested 800 mg NO3 from either NIT or BRJ on 2 separate days with ≥3 d apart. Venous blood samples were collected every hour, and FMSF determination was applied bihourly. RESULTS: Plasma betaine and choline concentrations peaked at 1 h after BRJ ingestion, and remained significantly higher than baseline values at all time points (P < 0.001 and P < 0.001, compared to preingestion values). Over time, BRJ was more effective in increasing NOx compared with NIT (fixed-trial effect P < 0.001). Baseline fluorescence decreased after both NIT and BRJ consumption (fixed-time effect P = 0.005). Transient ischemia and reperfusion response increased because of NO3 consumption (fixed-time effect P = 0.003), with no differences between trials (P = 0.451; P = 0.912; P = 0.819 at 0, 2, and 4 h, respectively). CONCLUSIONS: Acute ingestion of BRJ elevated plasma betaine and choline, but not TMA and TMAO. Moreover, plasma NOx levels were higher in the BRJ trial than in the NIT trial. Various sources of NO3 positively affected endothelial and mitochondrial functions. This trial was registered at clinicaltrials.gov as NCT05004935.


Assuntos
Beta vulgaris , Metilaminas , Nitratos , Adulto Jovem , Humanos , Betaína/farmacologia , Dióxido de Nitrogênio/farmacologia , Sucos de Frutas e Vegetais , Nitritos , Óxido Nítrico/metabolismo , Antioxidantes/farmacologia , Isquemia , Colina/farmacologia , Suplementos Nutricionais , Estudos Cross-Over , Pressão Sanguínea , Método Duplo-Cego
20.
Environ Sci Pollut Res Int ; 31(5): 7498-7513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158536

RESUMO

The toxicity of lead (Pb) in agricultural soil is constantly increasing as a result of anthropogenic activities. Pb is one of the most phytotoxic metals in soil that accumulates in plant tissue, resulting in yield loss. It is currently becoming more popular to supplement glycine betaine (GB) for Pb-induced stress tolerance in crop plants. Currently, no report describes the use of GB as a stress mitigator for growth attributes and stress-specific biomarkers in barley plants under Pb stress conditions. Hence, the present research was designed to examine the stress-mitigating behavior of GB on various growth attributes including germination percentage, seed vigor index (SVI), radicle length, plant biomass (fresh and dry), shoot and root length, physiological attributes such as relative water content (RWC), and stress-specific biomarkers like electrolyte leakage (EL), and H2O2 content of two barley varieties viz. BH959 and BH946 at three Pb stress treatments (15 mM, 25 mM, and 35 mM), with and without GB (2 mM) supplementation in natural conditions. The present investigation showed that at the highest Pb stress (35 mM), the germination rate was reduced to zero, and the growth attributes and RWC of both barley varieties were also reduced as compared to the non-stressed plants (control) with an increase in Pb treatment. However, EL up to 70% and H2O2 content up to 30% increased with an increase in Pb stress concentration indicated by ROS accumulation, resulting in more oxidative stress. Additionally, GB application alleviated the toxic effect of Pb stress by improving the rate of germination by 33.3% and growth performance by reducing the ROS accumulation in terms of reducing stress biomarkers H2O2 by 25%, and EL by 12%. It has been revealed that the application of GB can minimize or reduce the toxic effects caused by Pb toxicity in both varieties, positively modulating plant growth performances and lowering oxidative stress. This research may provide a scientific basis for assessing Pb tolerance in barley plants and developing alternative approaches to protecting them from the severe effects of Pb toxicity.


Assuntos
Betaína , Hordeum , Betaína/farmacologia , Chumbo/farmacologia , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Estresse Oxidativo , Solo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...